Существование современного человека без электричества даже представить, наверное, невозможно. Повсюду, во всех сферах жизни людей используются разнообразные электроприборы, устройства, механизмы, и ассортимент подобных «помощников» пополняется изо дня в день. Если еще лет 30 назад весь перечень бытовых электроприборов в среднестатистической семье ограничивался несколькими наименованиями, то сейчас это уже солидный список, каждый пункт которого по-своему важен для хозяев.
Но вот незадача – жилой фонд зачастую эксплуатируется без капитальных ремонтов чуть не по полвека. И те возможности бытовых электросетей, что закладывались когда-то, могут явно не отвечать требованиям современного изобилия бытовой электротехники. Как не допустить ошибки при выборе приборов, и как и оценить «потенциал» своей домашней электропроводки? Для этого нужно разбираться в базовых величинах бытовых электрических сетей, знать взаимосвязь между ними, уметь проводить хотя бы простейшие расчёты.
Именно этим и займемся. А так как напряжение в бытовых сетях, как правило, «большим разнообразием не балует», то есть составляет или 220 или 380 вольт, основной акцент будет сделан на силу тока и показатели мощности. Итак, разбираемся, как перевести амперы в киловатты, и наоборот, с расчетом по формулам или с помощью предлагаемого онлайн-калькулятора.
А зачем бывают нужны переводы ампер в киловатты и наоборот?
Афанасьев Е.В.
Главный редактор проекта dc-gold.ru. Инженер.
Большинство из той информации, что будет изложена ниже, ужа наверняка многим знакома хотя бы по школьному курсу физики. Однако, теория без практического приложения быстро теряется в закоулках памяти, и спустя несколько лет уже очень тяжело вспомнить, что к чему. Так, может, и вовсе не нужны эти «заморочки» – ведь прекрасно обходимся мы без очень многих знаний, полученных на школьной скамье?
Ответим так – если вы действительно хороший хозяин своего дома, то без оценки параметров электрической сети вам никак не обойтись. А какая-то одна единица измерения, увы, не может в достаточно полной мере описать и возможности имеющейся проводки, и примерный расход энергии. Так что, так или иначе, придется прибегать к расчетам.
Несколько примеров, когда такие вычисления имеют практическую направленность:
- Любой потребитель, пусть даже не особо искушённый в вопросах электротехники, приобретая то или иное бытовое устройство, обращает внимание на его мощность. Для одних случаев этот показатель говорит больше о возможностях изделия (например, электроинструмент или обогревательный прибор), для других, скорее, о потреблении энергии. Но в любом случае важно убедиться в том, что подключение этой «обновки» не будет сопровождаться перегрузкой домашней электросети или какого-то ее отдельного участка.
Оценку проводки и электрической арматуры обычно ведут по токовой нагрузке. Значит, необходимо уметь пересчитать мощность в силу тока, ее обеспечивающую. Затем уже, применяя специальные таблицы, определяют номиналы автоматических выключателей и минимально необходимую площадь сечения проводников, с учетом материала их изготовления (алюминий или медь).
И лишь потом, сравнивая эти обеспечивающие безопасность эксплуатации параметры с имеющимися в реальности, принимают решение или о допустимости дальнейшего использования проводки, или о необходимости прокладки новой линии, или даже полной реновации всей системы (такое тоже нередко случается).
- Теперь глянем на схожую проблему под несколько иным углом, скажем так, с «потребительским креном». А именно: за потреблённое электричество необходимо платить. А тарифы на оплату выражаются в рублях за показатели мощности, затраченные в течение какого-то временного промежутка.
И вот иногда случается, что хозяева квартиры или дома замечают явно завышенные, по сравнению с ранее оплачиваемыми счетами, затраты. И это — при всем том, что «парк» электроприборов в доме не наращивался. Надо полагать, какое-то из устройств стало работать некорректно, в нем образовался пока что скрытый дефект, приводящий к существенному возрастанию потребляемой мощности. Выявить такого «нарушителя спокойствия» можно промером силы тока с помощью мультиметра, с последующим пересчётом в показатели мощности.
- Бывает и иная причина проверить реальное потребление электроприбора. Многие встречались с ситуацией, когда в паспорте изделия указываются какие-то совершенно фантастические его возможности, а на практике владельца ожидает разочарование. То есть впечатляющие цифры на коробке в итоге не имеют под собой никакого понятного объяснения и являются обычной маркет-ловушкой недобросовестного производителя. Почему бы не убедиться в достоверности информации самому?
Если покопаться, то можно отыскать и иные значимые причины проверки параметров домашней электросети или характеристик бытовых приборов. Но и того, что уже было перечислено, вполне достаточно для понимания важности умения проводить подобные трансформации значений.
Кстати, вспомним, что это за значения и в каких единицах измеряются.
Калькуляторы перевода ватт в амперы и наоборот
Несмотря на довольно незамысловатые формулы и на даже имеющиеся переводные коэффициенты, многим пользователям все же проще провести такую трансформацию величин с помощью калькуляторов. Что ж, предоставим им такую возможность.
Ниже расположены два калькулятора – для пересчета тока в нагрузку и наоборот. Чтобы не дробить на различные нюансы, оба калькулятора сделаны универсальными, то есть могут применяться для сетей постоянного тока, однофазного и трехфазного переменного тока, для устройств с реактивной нагрузкой и без нее.
Если в последнем поле ввода не указывать коэффициент мощности (Cos f), то он принимается равным единице, то есть реактивной мощности по умолчанию нет.
Все пользователь выбирает и указывает самостоятельно в соответствующих полях приложения – и потом нажатием кнопки «РАССЧИТАТЬ…» выводит на дисплей готовый результат. Быстро и точно!
Калькулятор перевода силы тока в мощность нагрузки
Перейти к расчётамКалькулятор перевода мощности прибора (приборов) в токовую нагрузку линии питания
Физические единицы, характеризующие бытовую электросеть
Большинству читателей эти величины хорошо известны еще со школьной скамьи – они обязательно входят в базовый курс физики. Тем не менее, невостребованная длительное время информация имеет свойство прятаться в глубинах сознания, поэтому – «освежим» ее.
- Для того чтобы по замкнутой цепи пошел электрический ток, необходимо наличие напряжения. А напряжение – это разность потенциалов на противоположенных концах цепи — чаще всего рассматривается от источника питания. Сам же потенциал – это величина накопленного в данной точке электрического заряда, по сути – ее энергетическая способность. И потенциал, и его разность исчисляются в вольтах (В).
Напряжение может быть постоянным (что хорошо знают, например, автомобилисты), или переменным, в котором полюса меняются местами с определенной частотой. Это дает множество преференций в вопросах передачи электроэнергии на большие расстояния и ее использования по назначению. Поэтому-то нам в повседневной жизни чаще приходится иметь дело именно с переменным – 220 вольт (В) при частоте 50 герц (Гц).
- Если напряжение (разность потенциалов) достаточно велико для того, чтобы «протолкнуть» носители зарядов (электроны, ионы) по замкнутой цепи через нагрузку, в этой цепи появляется электрический ток. Он характеризуется особой величиной – силой тока, показывающей, сколько заряда прошло через конкретную точку в единицу времени, то есть в секунду. Для силы тока «выделена» особая единица измерения – ампер (А).
- Ток пропускается через нагрузку не просто так – от него ждут выполнения определенной работы, чаще всего связанной с преобразованием электрической энергии в другую — кинетическую, тепловую, звуковую и т.п. Количественное выражение выполняемой работы за единицу времени как раз и является мощностью. У нее своя единица измерения – ватт (Вт).
Вот эту мощность мы как раз и научимся оценивать, исходя из силы тока в цепи. И, естественно, наоборот.
Любая электрическая цепь всегда характеризуется еще и сопротивлением – общим, и на отдельных участках. И сопротивление, кстати, напрямую влияет на потребляемую мощность цепи. Но для нашей задачи, сформулированной выше, можно обойтись и без него – в базовой формуле сопротивление не фигурирует.
Раз речь пошла о базовых формулах, то самое время их напомнить.
Итак, согласно закону Ома
I = U / R
где:
I — сила тока (А);
U — напряжение (В);
R — сопротивление (Ом).
Мощность же в цепи переменного или постоянного тока можно описать следующей базовой формулой:
P = U x I
Сразу скажем, что оговорка про «базовую формулу» была сделана вовсе не зря. В цепи переменного тока при использовании некоторых типов нагрузки данное соотношение может претерпеть некоторые трансформации – об этом будет рассказано в свое время.
Итак, определив или имея изначально значение одного из параметров, несложно чисто математически вычислить показатель другого параметра. При этом напряжение в сети выступает некоторой «константой»: она или уже известна, или сразу замеряется вольтметром — благо, сделать это, в отличие от силы тока, труда не составит.
Если остаются вопросы по основным физическим величинам в электрике – рекомендуем посмотреть довольно доходчивый видеосюжет на эту тему:
Видео: Как между собой связаны основные физические величины в электротехнике?
Как измерить силу тока, чтобы оценить мощность?
Если нет возможности по документам оценить мощность включенного в цепь прибора, или если его реальное потребление вызывает вопросы, то придётся замерять ток, и, исходя из подученных показателей, проводить расчеты. А выше уже упоминалось, что замер силы тока – не такое простое занятие.
Связано это с тем, что ток, проходящий по цепи, очень часто достигает опасных для здоровья и жизни человека значений. А необходимость организовывать разрыв цепи для подключения амперметра – только усугубляет положение. Для неопытного пользователя слишком уж велика вероятность допустить фатальную ошибку, о возможных последствиях которой лучше не думать.
Постараемся подсказать парочку способов, как можно свести к минимуму эти сложности и как выполнить замеры с достаточным уровнем и комфорта, и безопасности.
Прежде всего, имеющийся у пользователя мультиметр должен обладать возможностью таких замеров. Это касается и типа тока (переменного АC или постоянного DC) — взаимозаменяемости здесь нет. Встречаются мультиметры, например, у которых возможность измерения силы переменного тока не предусмотрена в принципе.
Забегая вперед скажем, что даже с таким мультитестером все равно можно попытаться решить задачу – об это будет рассказано.
Безопасное измерение силы тока в цепи 220 В с помощью специального приспособления
Итак, проблема заключается в том, чтобы разорвать цепь для последовательного включения в нее амперметра. Причем, это должно быть сделано так, чтобы все операции проходили с максимальным уровнем безопасности. Короткое замыкание или случайное касание рукой фазного провода – в лучшем случае очень неприятные, но чаще даже весьма небезопасные ситуации…
Но любому домашнему мастеру вполне по силам собрать нехитрое приспособление, которое превращает замер силы тока в простую, процедуру со вполне высоким уровнем и безопасности, и комфорта.
Для работы понадобится минимальный набор комплектующих:
- Сетевой шнур с вилкой, с площадью сечения гибкого медного проводника 2.5 мм?. Длина шнура – какая будет мастеру удобна для подключения в розетку от места проведения замеров.
- Две внешних (накладных) розетки, без заземления.
- Отрезок изолированного медного проводника для изготовления перемычки.
- Прямоугольный фрагмент фанеры или того или иного листового пластика – так, чтобы на нем свободно разместились две рядом расположенные розетки.
Сборка «испытательного стенда» проводится в следующем порядке:
- Для начала розетки крепятся к основанию – фанерной или полимерной пластине. Расположить их рекомендуется примерно так, как показано на следующей иллюстрации.
- С «механикой» закончено – пора переходить к «электротехнической части». А именно:
— Два провода сетевого шнура (ноль и фаза) коммутируются каждый к одному контакту обеих розеток. Где окажется ноль, а где фаза в данном случае не имеет никакого значения.
— Оставшиеся свободными контакты розеток соединяются между собой перемычкой из подготовленного отрезка провода.
- Осталось поставить на место корпуса розеток, чтобы надёжно закрыть оголённые контакты – и прибор готов к работе.
Если присмотреться, то перед нами электрическая цепь с двумя разрывами – в аккурат на розетках. Один разрыв необходим для подключения тестируемой нагрузки (проверяемого бытового прибора), второй — для последовательного включения амперметра в общую цепь.
Итак, если все готово, и стоит задача проверить реальную мощность того или иного бытового прибора, то поступить видится правильным следующим образом:
- Приспособление устанавливается в любом удобном для работы месте, на столе или на полу, в зависимости от особенностей тестируемого электроприбора.
- Сетевой шнур подключается к розетке 220 вольт.
- Да, мы знаем, что в сети в идеале должно быть 220 вольт, но убедиться в этом не помешает. Не секрет, что электросети иногда «грешат» серьёзными перепадами, которые, может быть, и не особо отражаются внешне на работе бытовых приборов. Но для точного проведения расчёта есть смысл заранее промерить напряжение на момент проверки — так результат вычислений будет максимально точный
Выполнить замер сетевого напряжения – задача несложная. Такая возможность реализована практически на всех мультиметрах. Необходимо лишь заранее перевести прибор в режим измерения переменного напряжения (V AC или ~V), установить максимальный предел (больше 220 вольт – в разных мультиметрах это может быть 300, 500, 750 вольт). А затем останется щупы вольтметра опустить в гнезда розеток, к которым подключены проводники сетевого шнура. Это хорошо показано на иллюстрации выше.
Снятое показание вольтметра запоминают или записывают.
- Теперь мультиметр необходимо перевести в режим замера силы переменного тока. Повторимся – не во всех приборах такая функция реализована. Перевод может заключаться не только в установке режима переключателем, но и в смене гнезд одного или даже обоих щупов. Так, чтобы обезопасить прибор от слишком высоких показателей силы тока, пропускаемого через него. Кроме того, замеры силы тока более 1 ампера обычно ограничиваются по времени и периодичности. Обычно на корпусе мультиметра надписью однозначно говориться, например, что длительность одного замера не должна превысить стольких-то секунд, и очередной замер можно проводить после такой-то паузы. Здесь придётся хорошенько разобраться с конкретной моделью мультитестера.
Хорошенько разберитесь со своим мультиметром!
Прежде чем приступать к работе с новоприобретенным прибором, требуется досконально ознакомиться с его возможностями, типами и пределами измерений, особенностями приведения в рабочее состояние и технологии проведения замеров. Рассмотреть все модели невозможно, но основные типы мультиметров и главные правила работы с ними неплохо расписаны в специальной публикации нашего портала.
- Если все выполнено, то щупы амперметра вставляются в гнезда одной из розеток «испытательного стенда». Какой из двух – разницы не имеет.
- Во вторую розетку вставляется вилка сетевого шнура тестируемого бытового прибора.
- Вот теперь можно провести пуск нагрузки в нужном режиме мощности (если она варьируется) – и снять показания амперметра. Превышать максимальную длительность замера – крайне нежелательно, так как это может повлечь перегорание мультиметра. То есть после снятия нужных показаний (когда они вырастут до максимума и стабилизируются) испытываемый бытовой прибор тут же отключается.
Примечание: Некоторые приборы или изделия могут и не иметь никаких клавиш (кнопок) включения-выключения. Простейший пример – обычный паяльник. В этом случае, должно быть, удобнее цепь замыкать именно щупами мультиметра. То есть сначала в одну из розеток включается тестируемый прибор, а лишь затем щупы амперметра заводятся во вторую розетку. Аналогично и размыкание цепи после снятия показаний проводится извлечением щупов – это проще и быстрее, чем вытаскивать вилку.
Имея реально снятые значения напряжения питания и силы тока, проходящего через тестируемый работающий бытовой прибор, по указанной выше формуле несложно рассчитать и потребляемую мощность изделия.
А можно ли измерить силу тока … вольтметром?
Как уже не раз подчеркивалось, далеко не все измерительные приборы способны работать в режиме амперметра в сети переменного тока, тем более – при высоких, опасных значениях, порядка 0,5 ампера и выше. Стало быть, если в распоряжении только такой мультитестер, провести измерения невозможно?
Не спешите с этим соглашаться – есть интересный способ, когда для определения силы тока в цепи можно обойтись…вольтметром.
Все очень просто – для этого просто надо вспомнить формулу закона Ома — сила тока равна отношению напряжения на сопротивление. Но узнать сопротивление всей цепи, с включенными в нее приборами нагрузки – довольно хлопотное, а порой – и вовсе невозможное дело. Как быть?
Ничего страшного – для участка цепи закон Ома имеет такой же вид, только фигурирует в нем сопротивление этого участка и падение напряжения на нем. (Падение напряжения – это показатель напряжения между началом и концом тестируемого участка цепи).
Ну а сила тока на всех неразветвленных участках замкнутой цепи обязательно одинакова. То есть «сколько выходит – столько и приходит».
Надежные «сторожа» от утечек тока – УЗО и дифференциальные автоматы
Именно на упомянутом выше принципе, то есть «сколько зашло – столько и вышло», как раз и строится работа устройств защиты цепи от утечек. Если баланс нарушается, то есть появляется утечка тока «на сторону», автоматика мгновенно разорвет цепь. О подобных приборах защиты – УЗО и дифференциальных автоматах, подробно рассказывается в специальной публикации нашего портала.
Итак, количество ампер (А) равно количеству вольт (В), разделённое на количество ом (O или Ом).
Но тогда получается, что если намеренно создать какой-то участок цепи, в котором сопротивление будет равно ровно одному ому, то падение напряжения на нем покажет одновременно и силу тока, проходящего через него!
I = U / R
и при сопротивлении R = 1 O
I = U / 1 = U
Как создать такой участок?
— Первый вариант – использовать мощный резистор заводского изготовления с номиналом 1 Ом. Поискать придется в магазинах или на рынках радио- и электротехнических деталей.
— Второй вариант – изготовить такой резистор самостоятельно. Это не столь сложно, если в распоряжении есть нихромовая проволока, напроимер, от старой спирали. В качестве основания вполне подойдет полоска из текстолита или гетинакса. Длину отрезка проволоки для навивки «спирали» вполне можно рассчитать, если отыскать в интернете таблицу удельных сопротивлений для нихромовых проводников различного диаметра. Информации в интернете на этот счет – сколько угодно…
Кстати, для удобства можно снабдить свое изделие ножками-штырьками, с тем расчетом, чтобы они идеально подходили для установку в розетку нашего «испытательного стенда».
Что дальше? Да всё просто – одна розетка, опять же, служит для подключения нагрузки. Во вторую подключается резистор на 1 Ом. Щупы мультитестера, переведенного в режим измерения напряжения, можно зажимами закрепить на обоих концах этого сопротивления.
Включается нагрузка – и на шкале или дисплее мультиметра считывается величина падения напряжения на этом искусственно созданном участке цепи с сопротивлением1 Ом (в вольтах). Это же значение будет соответствовать и силе тока в цепи (в амперах).
Важно: Значение силы тока может быть довольно высоким. Резистор при замыкании цепи может начать быстро нагреваться вплоть до покраснения проводника. То есть все замеры следует проводить максимально быстро и очень аккуратно.
И, опять же, при наличии снятых показаний несложно рассчитать мощность нагрузки. Но не сделайте ошибки – напряжение в формулу подставляется именно сетевое, а вовсе не то значение падения напряжения, что снято на «эталонном участке цепи» с сопротивлением 1 Ом.
Особенности расчетов мощности для некоторых электрических цепей
Цепи постоянного тока и однофазного переменного тока с нагрузкой невысокой мощности
Все, о чем говорилось выше, вполне справедливо для цепей постоянного тока. И для переменного однофазного тока ( с напряжением 220 вольт), если речь идет о маломощной нагрузке (обычно в таком случае принято говорить о нагрузке ниже 1 киловатта), или же при подключении приборов, в которых используется только активная мощность.
К таким типам нагрузки можно отнести, скажем, светильники, работающие с лампами накала или со светодиодными, а также большинство бытовых обогревателей, не оснащенных электроприводами. По сути, в таких нагревательных приборах вся потребляемая электрическая энергия трансформируется в тепло, и потери минимальны.
Итак, в таких цепях работают формулы:
P = U x I — если требуется по замеренной силе тока оценить мощность
или
I = P / U — в случае необходимости оценить токовую нагрузку на проводку и электроарматуру при известной мощности подключаемых приборов.
Если на линии подключено несколько приборов, то их мощность предварительно суммируется, и по этому совокупному показателю оценивается токовая нагрузка на проводку.
Кстати, опытные электрики проводят такие оценки буквально за секунды. Дело в том, что если иметь дело с бытовым напряжением 220 вольт, то заведомо определяются две примерные «константы» для перевода из одной величины в другую. Попробуйте подставить в формулу 220 вольт и, поочередно, единицу вместо ампер или ватт. Получается:
1 Вт соответствует току 0,045 А
или
1 кВт нагрузки соответствует току 4,5 А.
И, аналогично, для обратной оценки
1 А силы тока соответствует нагрузке 220 Вт или 0,22 кВт.
Справедливости ради отметим, что большинство электриков все же принимает округленное соотношение, то есть току в 1 ампер соответствует нагрузка 0,2 киловатта.
Цепи однофазного переменного тока с реактивной нагрузкой
Очень многие бытовые приборы оснащаются электроприводами – двигателями, приводящими в движение кинематику устройства или обеспечивающими функционирование насосов, компрессоров, вентиляторов и т.п. А для работы таких изделий задействуется не только активная мощность (та самая, что получается по расчётам, приведенным выше), но и так называемая реактивная. На необходима для создания условий, в которых обеспечивается работа электротехнических устройств, например, электродвигателей или даже мощных газоразрядных ламп.
Эта реактивная мощность, образно выражаясь, постоянно перетекает из сети в нагрузку, постепенно развеиваясь в виде выработанного тепла. Так что правильно просчитать реальную потребляемую мощность прибора только по текущими показателям тока и напряжения – не удастся. А вот на проводку и на автоматические выключатели линии реактивная составляющая также оказывает весьма ощутимую нагрузку, которую приходится обязательно учитывать.
Физически эта реактивная мощность описывается коэффициентом, который равен косинусу угла сдвига фаз тока и напряжения.
На иллюстрации ниже показано несколько графиков. Первый – это синусоиды тока и напряжения в изделиях, где реактивная нагрузка отсутствует. Второй сверху – очевидный сдвиг фаз в электротехнических устройствах с реактивной нагрузкой. И нижний – результирующий, показывающий, что в таких устройствах мощность ни при каких условиях не достигает минимальных значений именно за счет имеющегося сдвига фаз – это, упрощенно говоря, как раз и есть реактивная составляющая.
Для таких приборов и машин формула расчета несколько преображается.
P = U x I x Cos f
и
I = P /(U x Cos f)
Кстати, формулу с коэффициентом мощности вполне можно считать универсальной для однофазной цепи. Просто при отсутствии смещения фаз (f = 0), косинус становится равным единице, то есть никакого влияния на конечный результат не оказывает.
Важно уяснить, что оценивать проводку линии питания следует именно по суммарной нагрузке (активной + реактивной), а не по полезной или потребляемой мощности прибора. Чтобы не было путаницы, принято выражать в ваттах или киловаттах (Вт или кВт) потребляемую мощность, а суммарную нагрузку, с учетом реактивной составляющей – в вольт-амперах (ВА или кВА). По сути, казалось бы, то же самое. Просто если в паспорте (на шильдике) указаны Вт или кВт, то следует еще пересчитать суммарную мощность с учетом коэффициента Cos f. Если же указано ВА, то этого достаточно для оценки возможности проводки, а реальную мощность можно «понизить» с использованием все того же коэффициента.
Интересно, что, например, мощностные характеристики многих генераторов или стабилизаторов напряжения обычно как раз чаще всего показываются именно вольт-амперным выражением. А иногда и «полезной» мощностью, в ваттах, и общей — в вольт-амперах. Понятно, что вольт-амперная характеристика всегда будет выше потребляемой мощности, так как учитывает запас на реактивную составляющую.
Цепи трехфазного переменного тока
А как быть в сети трехфазного переменного тока? Имеется в виду, конечно, не подключение однофазного прибора к одной из фаз, то есть к 220 вольтам, а полноценная нагрузка, распределенная по трем фазам. Встречается такое в бытовых условиях не столь часто, но все же знать это будет полезно.
Как правило, трехфазные электроприборы и машины, используемые на бытовом уровне, собираются по схеме «звезды». Схема «треугольник» распространена меньше, поэтому о ее расчете речь ниже идти не будет.
Итак, сила тока может быть замерена на любом из лучей этой звезды. Мощность трехфазной нагрузки при этом определится формулой
P = ? 3 x U x I
где U – это линейное напряжение питания, равное в данном случае 380 вольт.
Проявляющему любопытство читателю эта формула сразу же наглядно демонстрирует, насколько трехфазная сеть выгоднее для питания оборудования высокой мощности. Взгляните, это интересно:
? 3 ? 1,73
380 / 220 ? 1,73
то есть
P = ? 3 x U x I = 1,73 x 1,73 x 220 x I = 3 x 220 x I
То есть при равном значении силы тока, проходящим через проводник, мощность возрастает втрое по сравнению с однофазным прибором. Или, если иначе – при равной мощности подключённых приборов токовая нагрузка на отельный проводник снижается в ? 3 (или в 1.73) раз. А это – очень немало, особенно если приходится оперировать показателями в десятки киловатт!
Можно, кстати, по аналогии с однофазной сетью, определить поправочные коэффициенты для быстрого перевода ватт в амперы и наоборот. Так, для трехфазной нагрузки отслеживается такая взаимозависимость:
— для нагрузки в 1 кВт требуется ток силой 1.5 А
или
— ток силой 1 А будет соответствовать нагрузке 0,66 кВт.
Старовер Варнаков
Профессионалам эта информация известна, а ни один Lb00;чайникMc64; эту статью до конца не дочитает. Для кого столько Lb00;водыMc64;?